Install StarlingX Kubernetes on Bare Metal AIO-DX¶
This section describes the steps to install the StarlingX Kubernetes platform on a StarlingX R2.0 bare metal All-in-one Duplex deployment configuration.
Create a bootable USB¶
Refer to Create Bootable USB for instructions on how to create a bootable USB with the StarlingX ISO on your system.
Install software on controller-0¶
Insert the bootable USB into a bootable USB port on the host you are configuring as controller-0.
Power on the host.
Attach to a console, ensure the host boots from the USB, and wait for the StarlingX Installer Menus.
Make the following menu selections in the installer:
First menu: Select ‘All-in-one Controller Configuration’
Second menu: Select ‘Graphical Console’ or ‘Textual Console’ depending on your terminal access to the console port
Third menu: Select ‘Standard Security Profile’
Wait for non-interactive install of software to complete and server to reboot. This can take 5-10 minutes, depending on the performance of the server.
Bootstrap system on controller-0¶
Login using the username / password of “sysadmin” / “sysadmin”. When logging in for the first time, you will be forced to change the password.
Login: sysadmin Password: Changing password for sysadmin. (current) UNIX Password: sysadmin New Password: (repeat) New Password:
Verify and/or configure IP connectivity.
External connectivity is required to run the Ansible bootstrap playbook. The StarlingX boot image will DHCP out all interfaces so the server may have obtained an IP address and have external IP connectivity if a DHCP server is present in your environment. Verify this using the ip addr and ping 8.8.8.8 commands.
Otherwise, manually configure an IP address and default IP route. Use the PORT, IP-ADDRESS/SUBNET-LENGTH and GATEWAY-IP-ADDRESS applicable to your deployment environment.
sudo ip address add <IP-ADDRESS>/<SUBNET-LENGTH> dev <PORT> sudo ip link set up dev <PORT> sudo ip route add default via <GATEWAY-IP-ADDRESS> dev <PORT> ping 8.8.8.8
Specify user configuration overrides for the Ansible bootstrap playbook.
Ansible is used to bootstrap StarlingX on controller-0. Key files for Ansible configuration are:
/etc/ansible/hosts
The default Ansible inventory file. Contains a single host: localhost.
/usr/share/ansible/stx-ansible/playbooks/bootstrap/bootstrap.yml
The Ansible bootstrap playbook.
/usr/share/ansible/stx-ansible/playbooks/host_vars/bootstrap/default.yml
The default configuration values for the bootstrap playbook.
- sysadmin home directory ($HOME)
The default location where Ansible looks for and imports user configuration override files for hosts. For example:
$HOME/<hostname>.yml
.
Specify the user configuration override file for the Ansible bootstrap playbook using one of the following methods:
Use a copy of the default.yml file listed above to provide your overrides.
The default.yml file lists all available parameters for bootstrap configuration with a brief description for each parameter in the file comments.
To use this method, copy the default.yml file listed above to
$HOME/localhost.yml
and edit the configurable values as desired.Create a minimal user configuration override file.
To use this method, create your override file at
$HOME/localhost.yml
and provide the minimum required parameters for the deployment configuration as shown in the example below. Use the OAM IP SUBNET and IP ADDRESSing applicable to your deployment environment.cd ~ cat <<EOF > localhost.yml system_mode: duplex dns_servers: - 8.8.8.8 - 8.8.4.4 external_oam_subnet: <OAM-IP-SUBNET>/<OAM-IP-SUBNET-LENGTH> external_oam_gateway_address: <OAM-GATEWAY-IP-ADDRESS> external_oam_floating_address: <OAM-FLOATING-IP-ADDRESS> external_oam_node_0_address: <OAM-CONTROLLER-0-IP-ADDRESS> external_oam_node_1_address: <OAM-CONTROLLER-1-IP-ADDRESS> admin_username: admin admin_password: <sysadmin-password> ansible_become_pass: <sysadmin-password> EOF
Refer to Ansible Bootstrap Configurations for information on additional Ansible bootstrap configurations for advanced Ansible bootstrap scenarios.
Run the Ansible bootstrap playbook:
ansible-playbook /usr/share/ansible/stx-ansible/playbooks/bootstrap/bootstrap.yml
Wait for Ansible bootstrap playbook to complete. This can take 5-10 minutes, depending on the performance of the host machine.
Configure controller-0¶
Acquire admin credentials:
source /etc/platform/openrc
Configure the OAM and MGMT interfaces of controller-0 and specify the attached networks. Use the OAM and MGMT port names, for example eth0, that are applicable to your deployment environment.
OAM_IF=<OAM-PORT> MGMT_IF=<MGMT-PORT> system host-if-modify controller-0 lo -c none IFNET_UUIDS=$(system interface-network-list controller-0 | awk '{if ($6=="lo") print $4;}') for UUID in $IFNET_UUIDS; do system interface-network-remove ${UUID} done system host-if-modify controller-0 $OAM_IF -c platform system interface-network-assign controller-0 $OAM_IF oam system host-if-modify controller-0 $MGMT_IF -c platform system interface-network-assign controller-0 $MGMT_IF mgmt system interface-network-assign controller-0 $MGMT_IF cluster-host
Configure NTP Servers for network time synchronization:
system ntp-modify ntpservers=0.pool.ntp.org,1.pool.ntp.org
Configure data interfaces for controller-0. Use the DATA port names, for example eth0, applicable to your deployment environment.
Important
This step is required for OpenStack.
This step is optional for Kubernetes: Do this step if using SRIOV network attachments in hosted application containers.
For Kubernetes SRIOV network attachments:
Configure the SRIOV device plugin
system host-label-assign controller-0 sriovdp=enabled
If planning on running DPDK in containers on this host, configure the number of 1G Huge pages required on both NUMA nodes.
system host-memory-modify controller-0 0 -1G 100 system host-memory-modify controller-0 1 -1G 100
For both Kubernetes and OpenStack:
DATA0IF=<DATA-0-PORT> DATA1IF=<DATA-1-PORT> export COMPUTE=controller-0 PHYSNET0='physnet0' PHYSNET1='physnet1' SPL=/tmp/tmp-system-port-list SPIL=/tmp/tmp-system-host-if-list system host-port-list ${COMPUTE} --nowrap > ${SPL} system host-if-list -a ${COMPUTE} --nowrap > ${SPIL} DATA0PCIADDR=$(cat $SPL | grep $DATA0IF |awk '{print $8}') DATA1PCIADDR=$(cat $SPL | grep $DATA1IF |awk '{print $8}') DATA0PORTUUID=$(cat $SPL | grep ${DATA0PCIADDR} | awk '{print $2}') DATA1PORTUUID=$(cat $SPL | grep ${DATA1PCIADDR} | awk '{print $2}') DATA0PORTNAME=$(cat $SPL | grep ${DATA0PCIADDR} | awk '{print $4}') DATA1PORTNAME=$(cat $SPL | grep ${DATA1PCIADDR} | awk '{print $4}') DATA0IFUUID=$(cat $SPIL | awk -v DATA0PORTNAME=$DATA0PORTNAME '($12 ~ DATA0PORTNAME) {print $2}') DATA1IFUUID=$(cat $SPIL | awk -v DATA1PORTNAME=$DATA1PORTNAME '($12 ~ DATA1PORTNAME) {print $2}') system datanetwork-add ${PHYSNET0} vlan system datanetwork-add ${PHYSNET1} vlan system host-if-modify -m 1500 -n data0 -c data ${COMPUTE} ${DATA0IFUUID} system host-if-modify -m 1500 -n data1 -c data ${COMPUTE} ${DATA1IFUUID} system interface-datanetwork-assign ${COMPUTE} ${DATA0IFUUID} ${PHYSNET0} system interface-datanetwork-assign ${COMPUTE} ${DATA1IFUUID} ${PHYSNET1}
Add an OSD on controller-0 for Ceph. The following example adds an OSD to the sdb disk:
echo ">>> Add OSDs to primary tier" system host-disk-list controller-0 system host-disk-list controller-0 | awk '/\/dev\/sdb/{print $2}' | xargs -i system host-stor-add controller-0 {} system host-stor-list controller-0
OpenStack-specific host configuration¶
Important
This step is required only if the StarlingX OpenStack application (stx-openstack) will be installed.
For OpenStack only: Assign OpenStack host labels to controller-0 in support of installing the stx-openstack manifest and helm-charts later.
system host-label-assign controller-0 openstack-control-plane=enabled system host-label-assign controller-0 openstack-compute-node=enabled system host-label-assign controller-0 openvswitch=enabled system host-label-assign controller-0 sriov=enabled
For OpenStack only: Configure the system setting for the vSwitch.
StarlingX has OVS (kernel-based) vSwitch configured as default:
Runs in a container; defined within the helm charts of stx-openstack manifest.
Shares the core(s) assigned to the platform.
If you require better performance, OVS-DPDK should be used:
Runs directly on the host (it is not containerized).
Requires that at least 1 core be assigned/dedicated to the vSwitch function.
To deploy the default containerized OVS:
system modify --vswitch_type none
Do not run any vSwitch directly on the host, instead, use the containerized OVS defined in the helm charts of stx-openstack manifest.
To deploy OVS-DPDK (OVS with the Data Plane Development Kit, which is supported only on bare metal hardware), run the following command:
system modify --vswitch_type ovs-dpdk system host-cpu-modify -f vswitch -p0 1 controller-0
Once vswitch_type is set to OVS-DPDK, any subsequent nodes created will default to automatically assigning 1 vSwitch core for AIO controllers and 2 vSwitch cores for computes.
When using OVS-DPDK, virtual machines must be configured to use a flavor with property: hw:mem_page_size=large
Note
After controller-0 is unlocked, changing vswitch_type requires locking and unlocking all computes (and/or AIO Controllers) to apply the change.
For OpenStack only: Set up disk partition for nova-local volume group, which is needed for stx-openstack nova ephemeral disks.
export COMPUTE=controller-0 echo ">>> Getting root disk info" ROOT_DISK=$(system host-show ${COMPUTE} | grep rootfs | awk '{print $4}') ROOT_DISK_UUID=$(system host-disk-list ${COMPUTE} --nowrap | grep ${ROOT_DISK} | awk '{print $2}') echo "Root disk: $ROOT_DISK, UUID: $ROOT_DISK_UUID" echo ">>>> Configuring nova-local" NOVA_SIZE=34 NOVA_PARTITION=$(system host-disk-partition-add -t lvm_phys_vol ${COMPUTE} ${ROOT_DISK_UUID} ${NOVA_SIZE}) NOVA_PARTITION_UUID=$(echo ${NOVA_PARTITION} | grep -ow "| uuid | [a-z0-9\-]* |" | awk '{print $4}') system host-lvg-add ${COMPUTE} nova-local system host-pv-add ${COMPUTE} nova-local ${NOVA_PARTITION_UUID} sleep 2
Unlock controller-0¶
Unlock controller-0 in order to bring it into service:
system host-unlock controller-0
Controller-0 will reboot in order to apply configuration changes and come into service. This can take 5-10 minutes, depending on the performance of the host machine.
Install software on controller-1 node¶
Power on the controller-1 server and force it to network boot with the appropriate BIOS boot options for your particular server.
As controller-1 boots, a message appears on its console instructing you to configure the personality of the node.
On the console of controller-0, list hosts to see newly discovered controller-1 host (hostname=None):
system host-list +----+--------------+-------------+----------------+-------------+--------------+ | id | hostname | personality | administrative | operational | availability | +----+--------------+-------------+----------------+-------------+--------------+ | 1 | controller-0 | controller | unlocked | enabled | available | | 2 | None | None | locked | disabled | offline | +----+--------------+-------------+----------------+-------------+--------------+
Using the host id, set the personality of this host to ‘controller’:
system host-update 2 personality=controller
Wait for the software installation on controller-1 to complete, for controller-1 to reboot, and for controller-1 to show as locked/disabled/online in ‘system host-list’.
This can take 5-10 minutes, depending on the performance of the host machine.
system host-list +----+--------------+-------------+----------------+-------------+--------------+ | id | hostname | personality | administrative | operational | availability | +----+--------------+-------------+----------------+-------------+--------------+ | 1 | controller-0 | controller | unlocked | enabled | available | | 2 | controller-1 | controller | locked | disabled | online | +----+--------------+-------------+----------------+-------------+--------------+
Configure controller-1¶
Configure the OAM and MGMT interfaces of controller-1 and specify the attached networks. Use the OAM and MGMT port names, for example eth0, that are applicable to your deployment environment:
(Note that the MGMT interface is partially set up automatically by the network install procedure.)
OAM_IF=<OAM-PORT> MGMT_IF=<MGMT-PORT> system host-if-modify controller-1 $OAM_IF -c platform system interface-network-assign controller-1 $OAM_IF oam system interface-network-assign controller-1 mgmt0 cluster-host
Configure data interfaces for controller-1. Use the DATA port names, for example eth0, applicable to your deployment environment.
Important
This step is required for OpenStack.
This step is optional for Kubernetes: Do this step if using SRIOV network attachments in hosted application containers.
For Kubernetes SRIOV network attachments:
Configure the SRIOV device plugin:
system host-label-assign controller-1 sriovdp=enabled
If planning on running DPDK in containers on this host, configure the number of 1G Huge pages required on both NUMA nodes:
system host-memory-modify controller-1 0 -1G 100 system host-memory-modify controller-1 1 -1G 100
For both Kubernetes and OpenStack:
DATA0IF=<DATA-0-PORT> DATA1IF=<DATA-1-PORT> export COMPUTE=controller-1 PHYSNET0='physnet0' PHYSNET1='physnet1' SPL=/tmp/tmp-system-port-list SPIL=/tmp/tmp-system-host-if-list system host-port-list ${COMPUTE} --nowrap > ${SPL} system host-if-list -a ${COMPUTE} --nowrap > ${SPIL} DATA0PCIADDR=$(cat $SPL | grep $DATA0IF |awk '{print $8}') DATA1PCIADDR=$(cat $SPL | grep $DATA1IF |awk '{print $8}') DATA0PORTUUID=$(cat $SPL | grep ${DATA0PCIADDR} | awk '{print $2}') DATA1PORTUUID=$(cat $SPL | grep ${DATA1PCIADDR} | awk '{print $2}') DATA0PORTNAME=$(cat $SPL | grep ${DATA0PCIADDR} | awk '{print $4}') DATA1PORTNAME=$(cat $SPL | grep ${DATA1PCIADDR} | awk '{print $4}') DATA0IFUUID=$(cat $SPIL | awk -v DATA0PORTNAME=$DATA0PORTNAME '($12 ~ DATA0PORTNAME) {print $2}') DATA1IFUUID=$(cat $SPIL | awk -v DATA1PORTNAME=$DATA1PORTNAME '($12 ~ DATA1PORTNAME) {print $2}') system datanetwork-add ${PHYSNET0} vlan system datanetwork-add ${PHYSNET1} vlan system host-if-modify -m 1500 -n data0 -c data ${COMPUTE} ${DATA0IFUUID} system host-if-modify -m 1500 -n data1 -c data ${COMPUTE} ${DATA1IFUUID} system interface-datanetwork-assign ${COMPUTE} ${DATA0IFUUID} ${PHYSNET0} system interface-datanetwork-assign ${COMPUTE} ${DATA1IFUUID} ${PHYSNET1}
Add an OSD on controller-1 for Ceph:
echo ">>> Add OSDs to primary tier" system host-disk-list controller-1 system host-disk-list controller-1 | awk '/\/dev\/sdb/{print $2}' | xargs -i system host-stor-add controller-1 {} system host-stor-list controller-1
OpenStack-specific host configuration¶
Important
This step is required only if the StarlingX OpenStack application (stx-openstack) will be installed.
For OpenStack only: Assign OpenStack host labels to controller-1 in support of installing the stx-openstack manifest and helm-charts later.
system host-label-assign controller-1 openstack-control-plane=enabled system host-label-assign controller-1 openstack-compute-node=enabled system host-label-assign controller-1 openvswitch=enabled system host-label-assign controller-1 sriov=enabled
For OpenStack only: Set up disk partition for nova-local volume group, which is needed for stx-openstack nova ephemeral disks.
export COMPUTE=controller-1 echo ">>> Getting root disk info" ROOT_DISK=$(system host-show ${COMPUTE} | grep rootfs | awk '{print $4}') ROOT_DISK_UUID=$(system host-disk-list ${COMPUTE} --nowrap | grep ${ROOT_DISK} | awk '{print $2}') echo "Root disk: $ROOT_DISK, UUID: $ROOT_DISK_UUID" echo ">>>> Configuring nova-local" NOVA_SIZE=34 NOVA_PARTITION=$(system host-disk-partition-add -t lvm_phys_vol ${COMPUTE} ${ROOT_DISK_UUID} ${NOVA_SIZE}) NOVA_PARTITION_UUID=$(echo ${NOVA_PARTITION} | grep -ow "| uuid | [a-z0-9\-]* |" | awk '{print $4}') system host-lvg-add ${COMPUTE} nova-local system host-pv-add ${COMPUTE} nova-local ${NOVA_PARTITION_UUID} sleep 2
Unlock controller-1¶
Unlock controller-1 in order to bring it into service:
system host-unlock controller-1
Controller-1 will reboot in order to apply configuration changes and come into service. This can take 5-10 minutes, depending on the performance of the host machine.
Next steps¶
Your Kubernetes cluster is now up and running.
For instructions on how to access StarlingX Kubernetes see Access StarlingX Kubernetes R2.0.
For instructions on how to install and access StarlingX OpenStack see StarlingX OpenStack.