Deploy FlexRAN 22.03 on StarlingX¶
Scope¶
FlexRAN is a vRAN reference implementation for virtualized cloud-enabled radio access networks. FlexRAN is not an open-source project. It is provided here as an example of a 5G application running on StarlingX.
This document provides details on how to build FlexRAN software for StarlingX, generate a containerized version of the prebuilt FlexRAN binaries, and deploy on StarlingX solution.
Note
The steps in this guide are based on FlexRAN 22.03. The instructions are subject to change in future releases of FlexRAN.
Intended Audience¶
The intended audience for this document is software engineers and system architects who want to design and develop 5G systems using the O-RAN specifications based on FlexRAN and StarlingX OpenSource Edge computing platform.
AIO Simplex Installation¶
Prepare USB stick with StarlingX Installation ISO¶
Get StarlingX Installation ISO from following location:
Burn the image to a USB stick:
Note
Be sure to use the correct USB device name when copying the image.
dd if=bootimage.iso of=/dev/sdc bs=1M
Follow the installation guide¶
In addition to the Hardware Requirements for StarlingX, you will need the following hardware for FlexRAN applications.
Minimum Requirement |
All-in-one Controller Node |
---|---|
Minimum processor class |
Single-CPU Intel Xeon Cascade Lake (14 nm) or IceLake (10 nm) |
Minimum memory |
64 GB single socket |
Minimum network ports |
OAM: 1x1GE, If only test timer mode, no other NIC required. |
BIOS settings |
|
Accelerator Card |
Mt. Bryce ACC100 (Intel eASIC chip which can be mounted on third party card) |
The FlexRAN application on StarlingX has been tested on Intel Reference Hardware platform: Coyote Pass (housing ICX-SP).
Note
Some third-party platforms such as SuperMicro / HPE / Dell / Quanta / and others can also be used depending on customer platform requirements, certain optimizations for low-latency, and power savings mode by the platform vendors.
Install Kubernetes Platform on All-in-one Simplex:
In addition to required StarlingX configuration, you must set up the Ceph backend for Kubernetes PVC, isolcpus and hugepages:
source /etc/platform/openrc NODE=controller-0 OAM_IF=<OAM-PORT> # if you use flat oam network system host-if-modify ${NODE} $OAM_IF -c platform system interface-network-assign ${NODE} $OAM_IF oam # if you use vlan oam network VLANID=<VLAN-ID> system host-if-modify -n pltif -c platform $NODE $OAM_IF system host-if-add ${NODE} -V $VLANID -c platform oam0 vlan pltif system interface-network-assign ${NODE} oam0 oam system host-label-assign $NODE sriovdp=enabled system host-label-assign $NODE kube-topology-mgr-policy=restricted # Ceph backend for k8s pvc system storage-backend-add ceph --confirmed system host-disk-list ${NODE} | awk '/\/dev\/sdb/{print $2}' | xargs -i system host-stor-add ${NODE} {} # isolate cpus depends on number of the physical core system host-cpu-modify -f application-isolated -p0 28 $NODE # allocate/enable hugepages for DPDK usage system host-memory-modify $NODE -1G 10 0 system host-unlock $NODE
After the system has been unlocked and available for the first time, configure ACC100 / Mount Bryce:
source /etc/platform/openrc system host-lock $NODE # get the device name of the Mount Bryce, we assume it is # pci_0000_85_00_0 here. system host-device-list $NODE # Modify the Mount Bryce device to enable it, specify the base driver # and vf driver, and configure it for 1 VFs # NOTE: If this is the initial install and have not unlocked, you will # get following error message. # Cannot configure device 73b13ddf-99be-44c8-8fbe-db85eb8d99ba until host # controller-0 is unlocked for the first time. system host-device-modify $NODE pci_0000_8a_00_0 --driver igb_uio --vf-driver vfio -N 1 system host-unlock $NODE
FlexRAN Software Prerequisites¶
FlexRAN 22.03 Release Package
FlexRAN Software Wireless Access Solutions is available from the following page: https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
FlexRAN DPDK BBDEV v22.03 Patch
This patch file is also available in FlexRAN Software Wireless Access Solutions mentioned above.
DPDK version 21.11
DPDK version 21.11 is available in http://static.dpdk.org/rel/dpdk-21.11.tar.xz
Intel oneAPI Compiler
The Intel oneAPI Compiler is used to compile Intel DPDK and L1 software. The Intel oneAPI Compiler can be obtained using the following link: https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html
Build, Deploy and Run FlexRAN¶
Generally speaking, the build and execution environments should not be the same. To build, deploy, and run the process on StarlingX, developers need to follow the instructions to build the customized Docker image, which includes:
Start the build soon after StarlingX is ready.
Use the scripts provided to generate a Docker image with pre-built FlexRAN binaries.
Launch the FlexRAN Pod using the image just generated.
Execute L1 test cases.
The following procedures provide detailed instructions for completing the stages described above.
FlexRAN build preparation¶
For details, see:
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
You can find build instructions in the Compilation Chapter of FlexRAN 5GNR Reference Solution 22.03.
The following steps provide a quick-start procedure for developers.
Create a PVC for FlexRAN build storage:
Note
The PVC size should be larger than 70G.
cat > volume-ceph.yaml << 'EOF' kind: PersistentVolumeClaim apiVersion: v1 metadata: name: flexran-storage spec: accessModes: - ReadWriteOnce resources: requests: storage: 80Gi storageClassName: general EOF controller-0:~$ kubectl create -f volume-ceph.yaml persistentvolumeclaim/flexran-storage created controller-0:~$ kubectl get pvc NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE flexran-storage Bound pvc-43e50806-785f-440b-8ed2-85bb3c9e8f79 80Gi RWO general 9s
Create the FlexRAN building image:
mkdir dockerbuilder && cd dockerbuilder # prepare the artifacts used for FlexRAN prebuilt binary Docker image mkdir docker-image-building cat > docker-image-building/readme << 'EOF' # Instructions of Docker image generation # Following steps are supposed to be executed inside building Pod, # after building FlexRAN from source code flxr_install_dir=/opt/fb/flexran/ # populate flexran related env var cd ${flxr_install_dir} source set_env_var.sh -d # prepare the FlexRAN binaries ./transport.sh # build the Docker image docker build -t flr-run -f Dockerfile . # tag and push orgname=somename docker tag flr-run ${orgname}/flr-run EOF cat > docker-image-building/transport.sh << 'EOF' #!/bin/bash # ICXPATH=/opt/fb/intel/oneapi/ echo "Make sure source setvars.sh first.(located in ICX oneapi installation directory)" echo "Make sure source set_env_var.sh -d first.(located in FlexRAN installation directory)" [[ -z "$MKLROOT" ]] && { echo "MKLROOT not set, exit..."; exit 1; } [[ -z "$IPPROOT" ]] && { echo "MKLROOT not set, exit..."; exit 1; } [[ -z "$CMPLR_ROOT" ]] && { echo "MKLROOT not set, exit..."; exit 1; } [[ -z "$DIR_WIRELESS_SDK_ROOT" ]] && { echo "DIR_WIRELESS_SDK_ROOT not set, exit..."; exit 1; } FLXPATH=`echo $DIR_WIRELESS_SDK_ROOT| awk -F '/sdk' '{print $1}'` [[ -d stuff ]] && { echo "Directory stuff exists, move it to old."; mv -f stuff stuff.old; } mkdir stuff; cd stuff mkdir libs cp -a $MKLROOT/lib/intel64/libmkl_intel_lp64.so* libs cp -a $MKLROOT/lib/intel64/libmkl_core.so* libs cp -a $MKLROOT/lib/intel64/libmkl_intel_thread.so* libs cp -a $MKLROOT/lib/intel64/libmkl_avx512.so.* libs cp -a $MKLROOT/lib/intel64/libmkl_avx2.so* libs cp -a $MKLROOT/lib/intel64/libmkl_avx.so* libs cp -a $IPPROOT/lib/intel64/libipps.so* libs cp -a $IPPROOT/lib/intel64/libippe.so* libs cp -a $IPPROOT/lib/intel64/libippcore.so* libs cp -a $IPPROOT/lib/intel64/libippee9.so* libs cp -a $IPPROOT/lib/intel64/libippse9.so* libs cp -a $CMPLR_ROOT/linux/compiler/lib/intel64_lin/libiomp5.so* libs cp -a $CMPLR_ROOT/linux/compiler/lib/intel64_lin/libirc.so* libs cp -a $CMPLR_ROOT/linux/compiler/lib/intel64_lin/libimf.so* libs cp -a $CMPLR_ROOT/linux/compiler/lib/intel64_lin/libsvml.so* libs cp -a $CMPLR_ROOT/linux/compiler/lib/intel64_lin/libintlc.so* libs cp -a $CMPLR_ROOT/linux/compiler/lib/intel64_lin/libirng.so* libs cp -a $FLXPATH/libs/cpa/bin/libmmwcpadrv.so* libs cp -a $FLXPATH/wls_mod/libwls.so* libs mkdir -p flexran/sdk/build-avx512-icx/ cp -rf $FLXPATH/sdk/build-avx512-icx/source flexran/sdk/build-avx512-icx/ cp -rf $FLXPATH/sdk/build-avx512-icx/install flexran/sdk/build-avx512-icx/ cp -rf $FLXPATH/bin flexran/ cp -rf $FLXPATH/set_env_var.sh flexran/ # testcase files mkdir -p tests/nr5g/ cd tests/nr5g/ for cfg in $FLXPATH/bin/nr5g/gnb/testmac/icelake-sp/*.cfg do cat $cfg | grep TEST_FD > /tmp/$$.testfile while IFS= read line do array=($(echo "$line" | sed 's/5GNR,/ /g')) for i in "${array[@]}"; do if [[ "$i" =~ \.cfg ]]; then casedir=`echo "$i"| cut -d / -f 1-3 | xargs` caseabsdir=$FLXPATH/tests/nr5g/$casedir [[ ! -d $casedir ]] && { mkdir -p $casedir; cp -rf $caseabsdir/* $casedir; } fi done done < /tmp/$$.testfile done echo "Transportation Completed." EOF chmod a+x docker-image-building/transport.sh cat > docker-image-building/set-l1-env.sh << 'EOF' # source this script to l1 binary location export WORKSPACE=/root/flexran export isa=avx512 cd $WORKSPACE source ./set_env_var.sh -i ${isa} MODE=$1 [[ -z "$MODE" ]] && read -p "Enter the MODE(LTE or 5G): " MODE if [ $MODE = LTE ]; then cd $WORKSPACE/bin/lte/l1/ fi if [ $MODE = 5G ]; then cd $WORKSPACE/bin/nr5g/gnb/l1 fi EOF cat > docker-image-building/set-l2-env.sh << 'EOF' # source this script to l2 binary location export WORKSPACE=/root/flexran export isa=avx512 cd $WORKSPACE source ./set_env_var.sh -i ${isa} MODE=$1 [[ -z "$MODE" ]] && read -p "Enter the MODE(LTE or 5G): " MODE if [ $MODE = LTE ]; then cd $WORKSPACE/bin/lte/testmac/ fi if [ $MODE = 5G ]; then cd $WORKSPACE/bin/nr5g/gnb/testmac fi EOF cat > docker-image-building/res-setup.sh << 'EOF' #!/bin/bash [[ -z "$PCIDEVICE_INTEL_COM_INTEL_ACC100_FEC" ]] && { echo "ACC100 not used, sleep..."; sleep infinity; } sed -i 's#.*dpdkBasebandFecMode.*# <dpdkBasebandFecMode\>1</dpdkBasebandFecMode>#' /root/flexran/bin/nr5g/gnb/l1/phycfg_timer.xml sed -i 's#.*dpdkBasebandDevice.*# <dpdkBasebandDevice\>'"$PCIDEVICE_INTEL_COM_INTEL_ACC100_FEC"'</dpdkBasebandDevice>#' /root/flexran/bin/nr5g/gnb/l1/phycfg_timer.xml echo "Resource setup Completed, sleep..." sleep infinity EOF chmod a+x docker-image-building/res-setup.sh mkdir docker-image-building/rootdir mv docker-image-building/res-setup.sh docker-image-building/rootdir mv docker-image-building/set-l1-env.sh docker-image-building/rootdir mv docker-image-building/set-l2-env.sh docker-image-building/rootdir cat > docker-image-building/Dockerfile << 'EOF' FROM centos:7.9.2009 RUN [ -e /etc/yum.conf ] && sed -i '/tsflags=nodocs/d' /etc/yum.conf || true RUN yum install -y libhugetlbfs* libstdc++* numa* gcc g++ iproute \ module-init-tools kmod pciutils python libaio libaio-devel \ numactl-devel nettools ethtool RUN yum clean all COPY stuff/libs/* /usr/lib64/ WORKDIR /root/ COPY stuff/flexran ./flexran COPY stuff/tests ./flexran/tests COPY rootdir/* ./ CMD ["/root/res-setup.sh"] EOF cat > Dockerfile << 'EOF' FROM centos:7.9.2009 RUN [ -e /etc/yum.conf ] && sed -i '/tsflags=nodocs/d' /etc/yum.conf || true RUN yum groupinstall -y 'Development Tools' RUN yum install -y vim gcc-c++ libhugetlbfs* libstdc++* kernel-devel numa* gcc git mlocate \ cmake wget ncurses-devel hmaccalc zlib-devel binutils-devel elfutils-libelf-devel \ numactl-devel libhugetlbfs-devel bc patch git patch tar zip unzip python3 sudo docker RUN yum install -y gtk3 mesa-libgbm at-spi2-core libdrm xdg-utils libxcb libnotify RUN yum install -y centos-release-scl RUN yum install -y devtoolset-8 RUN yum clean all RUN pip3 install meson && \ pip3 install ninja pyelftools # ENV HTTP_PROXY="" # ENV HTTPS_PROXY="" WORKDIR /usr/src/ RUN git clone https://github.com/pkgconf/pkgconf.git WORKDIR /usr/src/pkgconf RUN ./autogen.sh && ./configure && make && make install WORKDIR /usr/src/ RUN git clone git://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git WORKDIR /usr/src/rt-tests RUN git checkout stable/v1.0 RUN make all && make install COPY docker-image-building /root/docker-image-building WORKDIR /opt # Set default command CMD ["/usr/bin/bash"] EOF # build the Docker image for FlexRAN building environment sudo docker build -t flexran-builder . sudo docker tag flexran-builder registry.local:9001/flexran-builder:22.03 # push to registry.local:9001 sudo docker login registry.local:9001 -u admin -p <your_sysadmin_passwd> sudo docker push registry.local:9001/flexran-builder:22.03
Launch the pod to be used to build FlexRAN and attach it to the PVC:
Note
This pod is assumed to be assigned enough resources to launch quickly after FlexRAN is built. If you don’t have isolated CPU, hugepage and accelerator resources configured as part of the system used for building, feel free to remove related content from the yaml spec file. Hugepages-1Gi and intel.com/intel_acc100_fec are not required to perform the build.
cat > flexran-buildpod.yml << 'EOF' apiVersion: v1 kind: Pod metadata: name: buildpod annotations: spec: restartPolicy: Never containers: - name: buildpod image: registry.local:9001/flexran-builder:22.03 imagePullPolicy: IfNotPresent volumeMounts: - name: usrsrc mountPath: /usr/src - mountPath: /hugepages name: hugepage - name: lib-modules mountPath: /lib/modules - name: pvc1 mountPath: /opt/fb - name: docker-sock-volume mountPath: /var/run/docker.sock command: ["/bin/bash", "-ec", "sleep infinity"] securityContext: privileged: true capabilities: add: ["IPC_LOCK", "SYS_ADMIN"] resources: requests: memory: 32Gi hugepages-1Gi: 10Gi intel.com/intel_acc100_fec: '1' limits: memory: 32Gi intel.com/intel_acc100_fec: '1' hugepages-1Gi: 10Gi volumes: - name: usrsrc hostPath: path: /usr/src - name: lib-modules hostPath: path: /lib/modules - name: hugepage emptyDir: medium: HugePages - name: docker-sock-volume hostPath: path: /var/run/docker.sock type: Socket - name: pvc1 persistentVolumeClaim: claimName: flexran-storage EOF kubectl create -f flexran-buildpod.yml
Build FlexRAN in Pod¶
Build FlexRAN from a shell running in the pod:
kubectl exec -it buildpod -- bash
Copy the FlexRAN related files into the pod’s PVC using
scp
:mkdir -p /opt/fb/scratch && cd /opt/fb/scratch scp <options> FlexRAN-22.03-L1.tar.gz.part00 . scp <options> FlexRAN-22.03-L1.tar.gz.part01 . scp <options> dpdk_patch_22.03.patch . cat FlexRAN-22.03-L1.tar.gz.part00 FlexRAN-22.03-L1.tar.gz.part01 > FlexRAN-22.03-L1.tar.gz rm FlexRAN-22.03-L1.tar.gz.part00 rm FlexRAN-22.03-L1.tar.gz.part01
Copy DPDK source code into the pod’s PVC:
cd /opt && wget http://static.dpdk.org/rel/dpdk-21.11.tar.xz tar xf dpdk-21.11.tar.xz mv dpdk-21.11/ /opt/fb/dpdk-flxr-22.03 cd /opt/fb/dpdk-flxr-22.03 patch -p1 < /opt/fb/scratch/dpdk_patch_22.03.patch
Install the oneAPI (ICX) Compiler:
cd /opt/fb/scratch/ wget https://registrationcenter-download.intel.com/akdlm/irc_nas/18487/l_BaseKit_p_2022.1.2.146_offline.sh chmod a+x l_BaseKit_p_2022.1.2.146_offline.sh ./l_BaseKit_p_2022.1.2.146_offline.sh -a -s --eula accept --install-dir /opt/fb/intel/oneapi
Extract FlexRAN and populate the environment variables:
cd /opt/fb/scrach/ && tar zxvf FlexRAN-22.03-L1.tar.gz && ./extract.sh # input '/opt/fb/flexran' for Extract destination directory cd /opt/fb/flexran/ TARGET_COMPILER=icx source ./set_env_var.sh -d # When following promote message shows: # Enter One API Install Directory for icx, or just enter to set default # input: /opt/fb/intel/oneapi # promote message shows: # Enter DPDK Install Directory, or just enter to set default # input: /opt/fb/dpdk-flxr-22.03
Switch to the devtoolset-8 environment:
scl enable devtoolset-8 bash
or
source /opt/rh/devtoolset-8/enable
Build the FlexRAN SDK:
cd /opt/fb/flexran && ./flexran_build.sh -e -r 5gnr -m sdk
Build DPDK with the FlexRAN patch:
cd /opt/fb/dpdk-flxr-22.03 && meson build cd /opt/fb/dpdk-flxr-22.03/build && meson configure pip3 install pyelftools work_path=/opt/fb/flexran/sdk/build-avx512-icx/install && ninja
Build the FlexRAN applications:
cd /opt/fb/flexran # compile all available modules for 5gnr ./flexran_build.sh -e -r 5gnr
Generate Docker image with FlexRAN binaries¶
Note
Since host path /var/run/docker.sock
has been mounted into the building
pod, you can build the Docker image using the FlexRAN binaries from the
previous step inside the pod used to build FlexRAN. The artifacts used
by docker build have been integrated into the build image and
are ready to use.
Prepare the environment variable for the script in
/root/docker-image-building/transport.sh
:source /opt/fb/intel/oneapi/setvars.sh cd /opt/fb/flexran && source ./set_env_var.sh -d
Prepare binaries and scripts for Docker build:
cd /root/docker-image-building ./transport.sh
Build the Docker image. It will be saved in local host:
docker build -t flr-run -f Dockerfile .
Run the FlexRAN Test cases in Pod¶
After the build and Docker image generation steps above, you can launch the FlexRAN execution pod from the host.
Push the Docker image to registry.local:9001
# change to host side, in this case, it should be controller-0 host sudo docker login registry.local:9001 -u admin -p <your_sysadmin_passwd> sudo docker tag flr-run registry.local:9001/flxrun:22.03 sudo docker push registry.local:9001/flxrun:22.03
Launch the FlexRAN Pod.
Adjust the CPU and memory for your configuration. Memory should be configured to more than 32Gi for the test case pass rate.
Note
command
should not be used in the spec, otherwise it will overwrite the default container command which does accelerator PCI address filling for L1.cat > runpod-flxr.yml << 'EOF' apiVersion: v1 kind: Pod metadata: name: runpod annotations: spec: restartPolicy: Never containers: - name: runpod image: registry.local:9001/flxrun:22.03 imagePullPolicy: IfNotPresent volumeMounts: - mountPath: /hugepages name: hugepage securityContext: privileged: false capabilities: add: ["IPC_LOCK", "SYS_ADMIN", "SYS_NICE"] resources: requests: memory: 32Gi hugepages-1Gi: 6Gi intel.com/intel_acc100_fec: '1' limits: memory: 32Gi hugepages-1Gi: 6Gi intel.com/intel_acc100_fec: '1' volumes: - name: hugepage emptyDir: medium: HugePages EOF kubectl create -f runpod-flxr.yml
Execute L1.
Enter the L1 directory inside the pod:
kubectl exec -it runpod -- bash source set-l1-env.sh 5G
Edit the L1 configuration file:
Note
phycfg_timer.xml
has been modified by the entry script/root/res-setup.sh
to use the FEC accelerator:<dpdkBasebandFecMode>1</dpdkBasebandFecMode>
<dpdkBasebandDevice>0000:8b:00.0</dpdkBasebandDevice>
This configuration is scripted and runs automatically, no manual configuration is needed. You can use printenv PCIDEVICE_INTEL_COM_INTEL_ACC100_FEC to check dpdkBasebandDevice.
# change default CPU binding in section of <Threads> in phycfg_timer.xml # use the first 3 assigned CPUs for the Applications threads <!-- CPU Binding to Application Threads --> <Threads> <!-- System Threads (Single core id value): Core, priority, Policy [0: SCHED_FIFO 1: SCHED_RR] --> <systemThread>2, 0, 0</systemThread> <!-- Timer Thread (Single core id value): Core, priority, Policy [0: SCHED_FIFO 1: SCHED_RR] --> <timerThread>3, 96, 0</timerThread> <!-- FPGA for LDPC Thread (Single core id value): Core, priority, Policy [0: SCHED_FIFO 1: SCHED_RR] --> <FpgaDriverCpuInfo>4, 96, 0</FpgaDriverCpuInfo> <!-- FPGA for Front Haul (FFT / IFFT) Thread (Single core id value): Core, priority, Policy [0: SCHED_FIFO 1: SCHED_RR] --> <!-- This thread should be created for timer mode and hence can be same core as LDPC polling core --> <FrontHaulCpuInfo>4, 96, 0</FrontHaulCpuInfo> <!-- DPDK Radio Master Thread (Single core id value): Core, priority, Policy [0: SCHED_FIFO 1: SCHED_RR] --> <radioDpdkMaster>2, 99, 0</radioDpdkMaster> </Threads>
Run the L1 application:
# launch L1app ./l1.sh -e
Execute testmac in another terminal after L1 is up and running.
Enter the testmac directory inside the pod:
kubectl exec -it runpod -- bash source set-l2-env.sh 5G
Edit the testmac configuration file:
# Modify default CPU binding in section of <Threads> in testmac_cfg.xml # Make sure to use the CPU from the CPU whose ID is bigger than 13, # this way, the Application Threads will not overlap with the BBUPool CPUs. <!-- CPU Binding to Application Threads --> <Threads> <!-- Wireless Subsystem Thread: Core, priority, Policy [0: SCHED_FIFO 1: SCHED_RR] --> <wlsRxThread>16, 90, 0</wlsRxThread> <!-- System Threads: Core, priority, Policy [0: SCHED_FIFO 1: SCHED_RR] --> <systemThread>14, 0, 0</systemThread> <!-- TestMac Run Thread: Core, priority, Policy [0: SCHED_FIFO 1: SCHED_RR] --> <runThread>14, 89, 0</runThread> <!-- Thread to send / receive URLLC APIS to / from testmac to Phy. It will be created only when the phy_config has URLLC Support added to it: Core, priority, Policy [0: SCHED_FIFO 1: SCHED_RR] --> <urllcThread>15, 90, 0</urllcThread> </Threads> # workaround the known issue of parsing zero value in the config file sed -i '/>0</d' testmac_cfg.xml
Run the testmac application:
# launch testmac ./l2.sh --testfile=icelake-sp/icxsp_mu1_100mhz_mmimo_64x64_16stream_hton.cfg # Note, case of 3389 is the most stringent case, we can comment out # other cases in the file and run this case directly: # TEST_FD, 3389, 3, 5GNR, fd/mu1_100mhz/383/fd_testconfig_tst383.cfg, # 5GNR, fd/mu1_100mhz/386/fd_testconfig_tst386.cfg, # 5GNR, fd/mu1_100mhz/386/fd_testconfig_tst386.cfg
Note
For a detailed explanation of the XML configuration used by L1, refer to the FlexRAN documentation available at: https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html